Statistika | Diagram Batang | Diagram Garis | Mean, Median, Modus | Matematika
Statistika
Dalam kehidupan sehari-hari, kata statistik sanggup diartikan sebagai kumpulan angka-angka yang menggambarkan suatu masalah. Statistik korban gempa kabupaten Bantul misalnya, berisi angka-angka mengenai banyaknya korban contohnya yang mengalami luka ringan, luka berat, dan meninggal. Contoh lain contohnya data korban kecelakaan kemudian lintas dari kantor polisi kemudian lintas.
Statistik juga diartikan sebagai suatu ukuran yang dihitung dari sekumpulan data dan merupakan wakil dari data itu. Misalnya rata-rata skor tes matematika kelas XI ialah 78 atau benda lebih dari 90% penduduk Indonesia berada di pedesaan. Sedangkan pengertian statistika tolong-menolong ialah pengetahuan yang bekerjasama dengan cara penyusunan data, penyajian data, dan penarikan kesimpulan mengenai suatu keseluruhan berdasarkan data yang ada pada bab dari keseluruhan tadi. Keseluruhan objek yang diteleti disebut populasi sedangkan bab dari populasi disebut sampel.
Menurut fungsinya, statistika dibedakan menjadi dua jenis, yaitu statistika deskriptif dan statistika induktif (inferensial). Statistika deskriptif ialah bab statistika yang mempelajari cara penyusunan dan penyajian data yang dikumpulkan. Penyusunan data dimaksudkan untuk memperlihatkan citra mengenai urutan data atau kelompok data, sehingga pengguna data dapat mengenalinya dengan mudah. Penyajian data dimaksudkan untuk memperlihatkan citra mengenai data atau kelompok data dalam bentuk tabel, diagram, atau gambar.
Statistika induktif atau inferensial ialah bab statistika yang mempelajari tata cara penarikan kesimpulan yang valid mengenai populasi berdasarkan data pada sampel. Dalam menarik kesimpulan pada statistika inferensial biasanya digunakan unsur peluang.
Statistika induktif atau inferensial ialah bab statistika yang mempelajari tata cara penarikan kesimpulan yang valid mengenai populasi berdasarkan data pada sampel. Dalam menarik kesimpulan pada statistika inferensial biasanya digunakan unsur peluang.
Bila membicarakan statistika, maka tidak lepas dengan apa yang disebut data. Data sanggup diartikan sebagai keterangan yang diharapkan untuk memecahkan suatu masalah. Berikut ini diberikan macam-macam data ditinjau berdasarkan sifatnya, yaitu:
1. Data kualitatif, yaitu data yang berbentuk kategori atau atribut.
Misal:
Misal:
a. Harga kendaraan beroda empat semakin terjangkau
b. Murid-murid di SD Negeri 3 rajin-rajin.
2. Data kuantitatif, yaitu data yang berupa bilangan.
Misal:
a. Banyaknya siswa pada kelas II ialah 240.
b Tinggi pohon itu ialah 10 meter.
2. Data kuantitatif, yaitu data yang berupa bilangan.
Misal:
a. Banyaknya siswa pada kelas II ialah 240.
b Tinggi pohon itu ialah 10 meter.
Menyajikan data dalam bentuk diagram
Diagram Garis
Diagram Garis
Penyajian data statistik dengan memakai diagram berbentuk garis lurus disebut diagram garis lurus atau diagram garis. Diagram garis biasanya digunakan untuk menyajikan data statistik yang diperoleh berdasarkan pengamatan dari waktu ke waktu secara berurutan.
Sumbu X memperlihatkan waktu-waktu pengamatan, sedangkan sumbu Y memperlihatkan nilai data pengamatan untuk suatu waktu tertentu. Kumpulan waktu dan pengamatan membentuk titik-titik pada bidang XY, selanjutnya kolom dari tiap dua titik yang berdekatan tadi dihubungkan dengan garis lurus sehingga akan diperoleh diagram garis atau grafik garis. Untuk lebih jelasnya, perhatikan pola soal berikut.
Diagram Lingkaran
Diagram bundar ialah penyajian data statistik dengan memakai gambar yang berbentuk lingkaran. Bagian-bagian dari tempat bundar memperlihatkan bab belahan atau persen dari keseluruhan. Untuk menciptakan diagram lingkaran, terlebih dahulu ditentukan besarnya persentase tiap objek terhadap keseluruhan data dan besarnya sudut sentra sektor lingkaran.
Contoh soal
Ranah privat (pengaduan) dari koran Solo Pos pada tanggal 22 Februari 2008 ditunjukkan
ibarat tabel berikut.
Ranah privat (pengaduan) dari koran Solo Pos pada tanggal 22 Februari 2008 ditunjukkan
ibarat tabel berikut.
Nyatakan data di atas dalam bentuk diagram lingkaran.
Penyelesaian
Sebelum data pada tabel di atas disajikan dengan diagram lingkaran, terlebih dahulu ditentukan besarnya sudut dalam bundar dari data tersebut.
1. CPNS/Honda/GTT = 5/100 x 360° = 18°
2. Perbaikan/pembangunan/gangguan jalan = 9/100 x 360° = 32,4°
3. Masalah lingkungan/kebersihan = 6/100 x 360° = 21,6°
4. Kesehatan/PKMS/Askeskin = 3/100 x 360° = 10,8°
5. Lalu lintas/penertiban jalan = 6/100 x 360° = 21,6°
6. Revitalisasi/budaya Jawa = 20/100 x 360° = 72°
7. Parkir = 3/100 x 360° = 10,8°
8. Pekat/penipuan/preman = 7/100 x 360° = 25,2°
9. Persis/olahraga = 10/100 x 360° = 36°
10. PKL/Bangunan liar = 2/100 x 360° = 7,2°
11. PLN dan PDAM = 2/100 x 360° = 7,2°
12. Provider HP = 7/100 x 360° = 25,2°
13. Tayangan TV/radio/koran = 3/100 x 360° = 10,8°
14. Lain-lain = 17/100 x 360° = 61,2°
Diagram lingkarannya ialah sebagai berikut.
Penyelesaian
Sebelum data pada tabel di atas disajikan dengan diagram lingkaran, terlebih dahulu ditentukan besarnya sudut dalam bundar dari data tersebut.
1. CPNS/Honda/GTT = 5/100 x 360° = 18°
2. Perbaikan/pembangunan/gangguan jalan = 9/100 x 360° = 32,4°
3. Masalah lingkungan/kebersihan = 6/100 x 360° = 21,6°
4. Kesehatan/PKMS/Askeskin = 3/100 x 360° = 10,8°
5. Lalu lintas/penertiban jalan = 6/100 x 360° = 21,6°
6. Revitalisasi/budaya Jawa = 20/100 x 360° = 72°
7. Parkir = 3/100 x 360° = 10,8°
8. Pekat/penipuan/preman = 7/100 x 360° = 25,2°
9. Persis/olahraga = 10/100 x 360° = 36°
10. PKL/Bangunan liar = 2/100 x 360° = 7,2°
11. PLN dan PDAM = 2/100 x 360° = 7,2°
12. Provider HP = 7/100 x 360° = 25,2°
13. Tayangan TV/radio/koran = 3/100 x 360° = 10,8°
14. Lain-lain = 17/100 x 360° = 61,2°
Diagram lingkarannya ialah sebagai berikut.
Diagram Batang
Diagram batang umumnya digunakan untuk menggambarkan perkembangan nilai suatu objek penelitian dalam kurun waktu tertentu. Diagram batang memperlihatkan keterangan-keterangan dengan batang-batang tegak atau mendatar dan sama lebar dengan batang-batang terpisah. Perhatikan pola berikut ini.
Contoh soal
Jumlah lulusan Sekolah Menengan Atas X di suatu tempat dari tahun 2001 hingga tahun 2004 adalah
sebagai berikut.
Diagram batang umumnya digunakan untuk menggambarkan perkembangan nilai suatu objek penelitian dalam kurun waktu tertentu. Diagram batang memperlihatkan keterangan-keterangan dengan batang-batang tegak atau mendatar dan sama lebar dengan batang-batang terpisah. Perhatikan pola berikut ini.
Contoh soal
Jumlah lulusan Sekolah Menengan Atas X di suatu tempat dari tahun 2001 hingga tahun 2004 adalah
sebagai berikut.
Nyatakan data di atas dalam bentuk diagram batang.
Penyelesaian
Data tersebut sanggup disajikan dengan diagram batang sebagai berikut.
Penyelesaian
Data tersebut sanggup disajikan dengan diagram batang sebagai berikut.
Penyajian Data dalam Bentuk Tabel Distribusi Frekuensi
Perhatikan pola data hasil nilai pengerjaan kiprah Matematika
dari 40 siswa kelas XI berikut ini.
66 75 74 72 79 78 75 75 79 71
75 76 74 73 71 72 74 74 71 70
74 77 73 73 70 74 72 72 80 70
73 67 72 72 75 74 74 68 69 80
dari data diatas, sanggup dibentuk tabel distribusi frekuensi sbb:
Perhatikan pola data hasil nilai pengerjaan kiprah Matematika
dari 40 siswa kelas XI berikut ini.
66 75 74 72 79 78 75 75 79 71
75 76 74 73 71 72 74 74 71 70
74 77 73 73 70 74 72 72 80 70
73 67 72 72 75 74 74 68 69 80
dari data diatas, sanggup dibentuk tabel distribusi frekuensi sbb:
Istilah-istilah yang banyak digunakan dalam pembahasan distribusi frekuensi
bergolong atau distribusi frekuensi berkelompok antara lain sebagai berikut.
a. Interval Kelas
Tiap-tiap kelompok disebut interval kelas atau sering disebut interval atau kelas
saja. Dalam pola sebelumnya memuat enam interval ini.
65 – 67 → Interval kelas pertama
68 – 70 → Interval kelas kedua
71 – 73 → Interval kelas ketiga
74 – 76 → Interval kelas keempat
77 – 79 → Interval kelas kelima
80 – 82 → Interval kelas keenam
b. Batas Kelas
Berdasarkan tabel distribusi frekuensi di atas, angka 65, 68, 71, 74, 77, dan 80
merupakan batas bawah dari tiap-tiap kelas, sedangkan angka 67, 70, 73, 76, 79,
dan 82 merupakan batas atas dari tiap-tiap kelas.
c. Tepi Kelas (Batas Nyata Kelas)
Untuk mencari tepi kelas sanggup digunakan rumus berikut ini.
Tepi bawah = batas bawah – 0,5
Tepi atas = batas atas + 0,5
Dari tabel di atas maka tepi bawah kelas pertama 64,5 dan tepi atasnya 67,5, tepi
bawah kelas kedua 67,5 dan tepi atasnya 70,5 dan seterusnya.
d. Lebar kelas
Untuk mencari lebar kelas sanggup digunakan rumus:
Lebar kelas = tepi atas – tepi bawah
Jadi, lebar kelas dari tabel diatas ialah 67,5 – 64,5 = 3.
e. Titik Tengah
Untuk mencari titik tengah sanggup digunakan rumus:
Titik tengah = 1/2 (batas atas + batas bawah)
Dari tabel di atas: titik tengah kelas pertama = 1/2(67 + 65) = 66
titik tengah kedua = 1/2(70 + 68) = 69
dan seterusnya.
bergolong atau distribusi frekuensi berkelompok antara lain sebagai berikut.
a. Interval Kelas
Tiap-tiap kelompok disebut interval kelas atau sering disebut interval atau kelas
saja. Dalam pola sebelumnya memuat enam interval ini.
65 – 67 → Interval kelas pertama
68 – 70 → Interval kelas kedua
71 – 73 → Interval kelas ketiga
74 – 76 → Interval kelas keempat
77 – 79 → Interval kelas kelima
80 – 82 → Interval kelas keenam
b. Batas Kelas
Berdasarkan tabel distribusi frekuensi di atas, angka 65, 68, 71, 74, 77, dan 80
merupakan batas bawah dari tiap-tiap kelas, sedangkan angka 67, 70, 73, 76, 79,
dan 82 merupakan batas atas dari tiap-tiap kelas.
c. Tepi Kelas (Batas Nyata Kelas)
Untuk mencari tepi kelas sanggup digunakan rumus berikut ini.
Tepi bawah = batas bawah – 0,5
Tepi atas = batas atas + 0,5
Dari tabel di atas maka tepi bawah kelas pertama 64,5 dan tepi atasnya 67,5, tepi
bawah kelas kedua 67,5 dan tepi atasnya 70,5 dan seterusnya.
d. Lebar kelas
Untuk mencari lebar kelas sanggup digunakan rumus:
Lebar kelas = tepi atas – tepi bawah
Jadi, lebar kelas dari tabel diatas ialah 67,5 – 64,5 = 3.
e. Titik Tengah
Untuk mencari titik tengah sanggup digunakan rumus:
Titik tengah = 1/2 (batas atas + batas bawah)
Dari tabel di atas: titik tengah kelas pertama = 1/2(67 + 65) = 66
titik tengah kedua = 1/2(70 + 68) = 69
dan seterusnya.
Distribusi Frekuensi Kumulatif
Daftar distribusi kumulatif ada dua macam, yaitu sebagai berikut.
a. Daftar distribusi kumulatif kurang dari (menggunakan tepi atas).
b. Daftar distribusi kumulatif lebih dari (menggunakan tepi bawah).
Untuk lebih jelasnya, perhatikan pola data berikut ini.
Daftar distribusi kumulatif ada dua macam, yaitu sebagai berikut.
a. Daftar distribusi kumulatif kurang dari (menggunakan tepi atas).
b. Daftar distribusi kumulatif lebih dari (menggunakan tepi bawah).
Untuk lebih jelasnya, perhatikan pola data berikut ini.
Dari tabel di atas sanggup dibentuk daftar frekuensi kumulatif kurang dari dan lebih dari ibarat berikut.
Histogram
Dari suatu data yang diperoleh sanggup disusun dalam tabel distribusi frekuensi dan disajikan dalam bentuk diagram yang disebut histogram. Jika pada diagram batang, gambar batang-batangnya terpisah maka pada histogram gambar batang-batangnya berimpit. Histogram sanggup disajikan dari distribusi frekuensi tunggal maupun distribusi frekuensi bergolong. Untuk lebih jelasnya, perhatikan pola berikut ini.
Data banyaknya siswa kelas XI IPA yang tidak masuk sekolah dalam 8 hari berurutan
sebagai berikut.
sebagai berikut.
Poligon Frekuensi
Apabila pada titik-titik tengah dari histogram dihubungkan dengan garis dan batangbatangnya
dihapus, maka akan diperoleh poligon frekuensi. Berdasarkan pola di atas
sanggup dibentuk poligon frekuensinya ibarat gambar berikut ini.
Apabila pada titik-titik tengah dari histogram dihubungkan dengan garis dan batangbatangnya
dihapus, maka akan diperoleh poligon frekuensi. Berdasarkan pola di atas
sanggup dibentuk poligon frekuensinya ibarat gambar berikut ini.
pola soal:
Hasil pengukuran berat tubuh terhadap 100 siswa Sekolah Menengah Pertama X digambarkan dalam distribusi
bergolong ibarat di bawah ini. Sajikan data tersebut dalam histogram dan poligon frekuensi.
Hasil pengukuran berat tubuh terhadap 100 siswa Sekolah Menengah Pertama X digambarkan dalam distribusi
bergolong ibarat di bawah ini. Sajikan data tersebut dalam histogram dan poligon frekuensi.
Penyelesaian
Histogram dan poligon frekuensi dari tabel di atas sanggup ditunjukkan sebagai berikut.
Histogram dan poligon frekuensi dari tabel di atas sanggup ditunjukkan sebagai berikut.
Poligon Frekuensi Kumulatif
Dari distribusi frekuensi kumulatif sanggup dibentuk grafik garis yang disebut poligon frekuensi kumulatif. Jika poligon frekuensi kumulatif dihaluskan, diperoleh kurva yang disebut kurva ogive. Untuk lebih jelasnya, perhatikan pola soal berikut ini.
Hasil tes ulangan Matematika terhadap 40 siswa kelas XI IPA digambarkan dalam tabel di samping.
a. Buatlah daftar frekuensi kumulatif kurang dari dan lebih dari.
b. Gambarlah ogive naik dan ogive turun.
Dari distribusi frekuensi kumulatif sanggup dibentuk grafik garis yang disebut poligon frekuensi kumulatif. Jika poligon frekuensi kumulatif dihaluskan, diperoleh kurva yang disebut kurva ogive. Untuk lebih jelasnya, perhatikan pola soal berikut ini.
Hasil tes ulangan Matematika terhadap 40 siswa kelas XI IPA digambarkan dalam tabel di samping.
a. Buatlah daftar frekuensi kumulatif kurang dari dan lebih dari.
b. Gambarlah ogive naik dan ogive turun.
b. Ogive naik dan ogive turun
Daftar frekuensi kumulatif kurang dari dan lebih dari sanggup disajikan dalam bidang
Cartesius. Tepi atas (67,5; 70,5; …; 82,5) atau tepi bawah (64,5; 67,5; …; 79,5)
diletakkan pada sumbu X sedangkan frekuensi kumulatif kurang dari atau frekuensi
kumulatif lebih dari diletakkan pada sumbu Y. Apabila titik-titik yang diperlukan
dihubungkan, maka terbentuk kurva yang disebut ogive. Ada dua macam ogive,
yaitu ogive naik dan ogive turun. Ogive naik apabila grafik disusun berdasarkan
distribusi frekuensi kumulatif kurang dari. Sedangkan ogive turun apabila berdasarkan
distribusi frekuensi kumulatif lebih dari.
Ogive naik dan ogive turun data di atas ialah sebagai berikut.
Daftar frekuensi kumulatif kurang dari dan lebih dari sanggup disajikan dalam bidang
Cartesius. Tepi atas (67,5; 70,5; …; 82,5) atau tepi bawah (64,5; 67,5; …; 79,5)
diletakkan pada sumbu X sedangkan frekuensi kumulatif kurang dari atau frekuensi
kumulatif lebih dari diletakkan pada sumbu Y. Apabila titik-titik yang diperlukan
dihubungkan, maka terbentuk kurva yang disebut ogive. Ada dua macam ogive,
yaitu ogive naik dan ogive turun. Ogive naik apabila grafik disusun berdasarkan
distribusi frekuensi kumulatif kurang dari. Sedangkan ogive turun apabila berdasarkan
distribusi frekuensi kumulatif lebih dari.
Ogive naik dan ogive turun data di atas ialah sebagai berikut.
sumber http://matematika-ipa.com
Sumber http://ekonomimanajemenakuntansi.blogspot.com
0 Response to "Statistika | Diagram Batang | Diagram Garis | Mean, Median, Modus | Matematika"
Posting Komentar