iklan

Bank Soal Dan Pembahasan Matematika Dasar Logaritma

atatan calon guru yang kita diskusikan dikala ini akan membahas wacana Matematika Dasar Log Bank Soal dan Pembahasan Matematika Dasar Logaritma
Catatan calon guru yang kita diskusikan dikala ini akan membahas wacana Matematika Dasar Logaritma. logaritma tidak sanggup kita lepaskan dari topik sebelumnya yaitu eksponen dan bentuk akar. Eksponen, aturan dasar dan defenisi bentuk akar, dan logaritma sanggup kita istilahkan dengan tiga serangkai, alasannya ialah kalau dipelajari hanya salah satu belum lengkap rasanya.

Penerapan logaritma dalam kehidupan sehari-hari juga sangat banyak, diantaranya sanggup dilihat dari teladan soal yang kita diskusikan di bawah. Mempelajari dan memakai aturan-aturan pada logaritma juga sangatlah mudah, kalau Anda mengikuti step by step yang kita diskusikan dibawah ini, maka anda akan dengan gampang memahami soal-soal logaritma dan menemukan solusinya.

Bagaimana kekerabatan bilangan berpangkat, bentuk akar dan logaritma, secara sederhana sanggup kita simak penjelasannya sebagai berikut;
  • Dari bentuk bilangan berpangkat $ {\color{Blue} a}^{\color{Red} b}={\color{Green} c} $,
  • untuk mendapat bilangan ${\color{Blue} a}$ dengan memakai bilangan ${\color{Red} b}$ dan ${\color{Green} c}$ maka operasi yang kita gunakan ialah akar, penulisan operasinya ialah $ \sqrt[{\color{Red} b}]{{\color{Green} c}}={\color{Blue} a}$
  • untuk mendapat bilangan ${\color{Red} b}$ dengan memakai bilangan ${\color{Blue} a}$ dan ${\color{Green} c}$ maka operasi yang kita gunakan ialah logaritma, penulisan operasinya ialah $^{{\color{Blue} a}}\textrm{log}\ {\color{Green} c}={\color{Red} b}$
Beberapa teladan atau kesimpulan sederhana, sanggup kita tuliskan;
  • $ {\color{Blue} 2}^{\color{Red} 3}={\color{Green} 8} $ $\Leftrightarrow $ $^{{\color{Blue} 2}}\textrm{log}\ {\color{Green} 8}= {\color{Red}3}$;
  • $ \sqrt[{\color{Red} 3}]{{\color{Green} 8}}={\color{Blue} 2}$ $\Leftrightarrow$ $ {\color{Blue} 2}^{\color{Red} 3}={\color{Green} 8} $;
  • $ \sqrt[{\color{Red} 3}]{{\color{Green} 8}}={\color{Blue} 2}$ $\Leftrightarrow$ $^{{\color{Blue} 2}}\textrm{log}\ {\color{Green} 8}= {\color{Red}3}$.
Bentuk penulisan logaritma $^{{\color{Blue} a}}\textrm{log}\ {\color{Green} b}=c$ banyak kita temukan pada buku-buku berbahasa Indonesia, sedangkan untuk buku internasional yang secara umum dikuasai berbahasa Inggris penulisan logaritma ialah $ log_{{\color{Blue} a}}{\color{Green} b}=c $.

Istilah-istilah pada logaritma $^{{\color{Blue} a}}\textrm{log}\ {\color{Green} b}={\color{Red}c}$
  • $ {\color{Blue} a}$ disebut Basis [Bilangan Pokok]. Batasan nilai $ {\color{Blue} a}$ ialah $ {\color{Blue} a} \gt 0$ dan ${\color{Blue} a}\neq 1$. Untuk logaritma basis $10$ sanggup tidak dituliskan.
  • $ {\color{Green} b}$ disebut Numerus atau bilangan yang dicari logaritmanya. Batasan nilai $ {\color{Green} b}$ ialah $ {\color{Green} b} \gt 0$
  • $ {\color{Red}c}$ disebut Hasil logaritma
Setelah kita mengetahui bentuk umum atau bentuk dasar dari logaritma diatas, kini kita coba mengetahui beberapa sifat logaritma;
  1. ${}^a\!\log a=1$ alasannya ialah $ a^{0}=1$
  2. ${}^a\!\log 1=0$ alasannya ialah $ a^{1}=a$
  3. ${}^a\!\log x\ +{}^a\!\log y={}^a\!\log \left (x\cdot y \right )$
  4. ${}^a\!\log x\ -{}^a\!\log y={}^a\!\log \dfrac{x}{y} $
  5. ${}^a\!\log x^{n}=n {}^a\!\log x $
  6. ${}^a\!\log \sqrt[n]{x}=\dfrac{1}{n}\ {}^a\!\log x $
  7. ${}^{a^{n}}\!\log x^{m}=\dfrac{m}{n}\ {}^a\!\log x $
  8. ${}^a\!\log x= \dfrac{{}^p\!\log x}{{}^p\!\log a} $
  9. ${}^a\!\log x \cdot\ {}^x\!\log b={}^a\!\log b$
  10. ${}^a\!\log x= \dfrac{1}{{}^x\!\log a} $
  11. $ a^{{}^a\!\log x}= x $
  12. $ a^{{}^b\!\log c}=c^{{}^b\!\log a} $ (*pembuktian)
Sekarang kita coba diskusikan beberapa soal yang sudah pernah diujikan pada Kompetisi Matematika, Proyek Perintis, Sipenmaru, UMPTN, SNMPTN, SBMPTN, Ujian Nasional, Simak UI, UM UGM atau Ujian Mandiri yang dilakukan oleh pihak perguruan tinggi tinggi lainnya.

1. Soal SBMPTN 2015 Kode 634 (*Soal Lengkap)

Diketahui ${}^p\!\log 2 =8$ dan ${}^q\!\log 8 =4$. Jika $s=p^{4}$ dan $t=q^{2}$, maka nilai ${}^t\!\log s =\cdots$
$\begin{align}
(A)\ & \dfrac{1}{4} \\
(B)\ & \dfrac{1}{3} \\
(C)\ & \dfrac{2}{3} \\
(D)\ & \dfrac{3}{2} \\
(E)\ & 3
\end{align}$
Alternatif Pembahasan:

Dari data yang diketahui, kita peroleh;
$\begin{align}
{}^p\!\log 2 =8\ \Leftrightarrow & p=2^{\dfrac{1}{8}} \\
{}^q\!\log 8 =4\ \Leftrightarrow & q=8^{\dfrac{1}{4}}=2^{\dfrac{3}{4}} \\
\hline
{}^t\!\log s &= {}^{q^{2}}\!\log p^{4} \\
&= \dfrac{4}{2} {}^q\!\log p \\
& =2 \cdot \dfrac{4}{2}\ ^{2^\frac{1}{8}} {}^\!\log 2^\frac{3}{4} \\
& =2 \cdot \dfrac{\frac{1}{8}}{\frac{3}{4}} {}^2\!\log {2} \\
& =2 \cdot \dfrac{1}{8} \cdot \dfrac{4}{3} \\
& = \dfrac{1}{3}
\end{align}$

$\therefore$ Pilihan yang sesuai ialah $(B)\ \dfrac{1}{3}$

2. Soal SBMPTN 2014 Kode 622 (*Soal Lengkap)

Diketahui $a={}^4\!\log\ x$ dan $b={}^2\!\log\ x$. Jika ${}^4\!\log\ b+{}^2\!\log\ a=2$, maka $a+b$ adalah...
$\begin{align}
(A)\ & 4 \\
(B)\ & 6 \\
(C)\ & 8 \\
(D)\ & 12 \\
(E)\ & 16
\end{align}$
Alternatif Pembahasan:

$a=^{4}log\ x$ dan $b=^{2}log\ x$ $\Leftrightarrow $ $2a=b$

$\begin{align}
^{4}log\ b+^{2}log\ a &= 2 \\
\dfrac{1}{2}^{2}log\ b+^{2}log\ a &= 2 \\
^{2}log\ b^{\dfrac{1}{2}}+^{2}log\ a &= 2 \\
^{2}log\ \left( b^{\dfrac{1}{2}} \cdot a \right) &= 2 \\
b^{\dfrac{1}{2}} \cdot a &= 2^{2} \\
(2a)^{\dfrac{1}{2}} \cdot a &= 4 \\
2a \cdot a^{2} &= 16 \\
a^{3} &= 8 \\
a=2\ \text{dan}\ b=4
\end{align}$

Nilai $a+b=2+4=6$

$\therefore$ Pilihan yang sesuai ialah $(B)\ 6$

3. Soal SBMPTN 2013 Kode 425 (*Soal Lengkap)

Jika $^{x}log\ w=\dfrac{1}{2}$ dan $^{xy}log\ w=\dfrac{2}{5}$ maka nilai $^{y}log\ w$ adalah$\cdots$
$\begin{align}
(A)\ & 8 \\
(B)\ & 6 \\
(C)\ & 4 \\
(D)\ & 2 \\
(E)\ & 1
\end{align}$
Alternatif Pembahasan:

$\begin{align}
^{x}log\ w=\dfrac{1}{2} & \Leftrightarrow ^{w}log\ x=2
\end{align}$

$\begin{align}
^{xy}log\ w=\dfrac{2}{5}
& \Leftrightarrow ^{w}log\ {xy}=\dfrac{5}{2} \\
& \Leftrightarrow ^{w}log\ {x}+^{w}log\ {y}=\dfrac{5}{2} \\
& \Leftrightarrow 2+^{w}log\ {y}=\dfrac{5}{2} \\
& \Leftrightarrow ^{w}log\ {y}=\dfrac{5}{2}-2 \\
& \Leftrightarrow ^{w}log\ {y}=\dfrac{1}{2} \\
& \Leftrightarrow ^{y}log\ {w}=2
\end{align}$

$\therefore$ Pilihan yang sesuai ialah $(D)\ 2$

4. Soal SIMAK UI 2013 Kode 331 (*Soal Lengkap)

Diketahui bahwa:
$^{3}log\ x \cdot\ ^{6}log\ x \cdot\ ^{9}log\ x =$ $^{3}log\ x\cdot\ ^{6}log\ x + ^{3}log\ x \cdot\ ^{9}log\ x+ ^{6}log\ x \cdot\ ^{9}log\ x$
maka nilai $x$ adalah$\cdots$

$\begin{align}
(1)\ & \dfrac{1}{3} \\
(2)\ & 1 \\
(3)\ & 4 \\
(4)\ & 162
\end{align}$
Alternatif Pembahasan:

$^{3}log\ x \cdot\ ^{6}log\ x \cdot\ ^{9}log\ x =$ $^{3}log\ x\cdot\ ^{6}log\ x + ^{3}log\ x \cdot\ ^{9}log\ x+ ^{6}log\ x \cdot\ ^{9}log\ x$
Jika kita perhatikan persamaan diatas, tiap ruas mengandung $^{3}log\ x$ sehingga persamaan akan memenuhi untuk $x=1$.

Berikutnya, ruas kiri dan kanan persamaan kita kalikan dengan $^{x}log\ 3$ sehingga kita peroleh;
$\Rightarrow$ $^{3}log\ x \cdot\ ^{6}log\ x \cdot\ ^{9}log\ x \cdot\ ^{x}log\ 3=$ $^{3}log\ x\cdot\ ^{6}log\ x \cdot\ ^{x}log\ 3+ ^{3}log\ x \cdot\ ^{9}log\ x \cdot\ ^{x}log\ 3+ ^{6}log\ x \cdot\ ^{9}log\ x \cdot\ ^{x}log\ 3$

$\Rightarrow$ $^{6}log\ x \cdot\ ^{9}log\ x=$ $^{6}log\ x+^{9}log\ x+ ^{6}log\ x \cdot\ ^{9}log\ 3$

Berikutnya, ruas kiri dan kanan persamaan kita kalikan dengan $^{x}log\ 6$ sehingga kita peroleh;
$\Rightarrow$ $^{6}log\ x \cdot\ ^{9}log\ x \cdot\ ^{x}log\ 6=$ $^{6}log\ x \cdot\ ^{x}log\ 6+^{9}log\ x \cdot\ ^{x}log\ 6+ ^{6}log\ x \cdot\ ^{9}log\ 3 \cdot\ ^{x}log\ 6$

$\Rightarrow$ $^{9}log\ x=$ $1+^{9}log\ 6+ ^{9}log\ 3$
$\Rightarrow$ $^{9}log\ x=$ $^{9}log\ 9+^{9}log\ 6+ ^{9}log\ 3$
$\Rightarrow$ $^{9}log\ x=$ $^{9}log\ (9 \cdot 6 \cdot 3)$

$\therefore$ $x=9 \cdot 6 \cdot 3=162$.

$\therefore$ Pilihan yang sesuai ialah $(C)\ (2)\ \text{dan}\ (4)$

5. Soal SIMAK UI 2012 Kode 222 (*Soal Lengkap)

Jika diketahui:
$f(n)=^{2}log\ 3 \cdot\ ^{3}log\ 4 \cdot\ ^{4}log\ 5 \cdots\ ^{n-1}log\ n$ maka $f(8)+f(16)+f(32)+ \cdots +f(2^{30})=\cdots$

$\begin{align}
(A)\ & 461 \\
(B)\ & 462 \\
(C)\ & 463 \\
(D)\ & 464 \\
(E)\ & 465
\end{align}$
Alternatif Pembahasan:

$f(n)=^{2}log\ 3 \cdot\ ^{3}log\ 4 \cdot\ ^{4}log\ 5 \cdots\ ^{n-1}log\ n$
$f(8)=^{2}log\ 3 \cdot\ ^{3}log\ 4 \cdot\ ^{4}log\ 5 \cdots\ ^{7}log\ 8$
$f(2^{3})=^{2}log\ 8=3$

$f(16)=^{2}log\ 3 \cdot\ ^{3}log\ 4 \cdot\ ^{4}log\ 5 \cdots\ ^{15}log\ 16$
$f(2^{4})=^{2}log\ 16=4$

$f(32)=^{2}log\ 3 \cdot\ ^{3}log\ 4 \cdot\ ^{4}log\ 5 \cdots\ ^{31}log\ 32$
$f(2^{5})=^{2}log\ 8=5$
$\vdots$
$f(2^{30})=^{2}log\ 3 \cdot\ ^{3}log\ 4 \cdot\ ^{4}log\ 5 \cdots\ ^{2^{30}-1}log\ 2^{30}$
$f(2^{30})=^{2}log\ 2^{30}=30$

$f(8)+f(16)+f(32)+ \cdots +f(2^{30})$
$=3+4+5+\cdots+30$
$=15 \cdot 31 -3$
$=462$

$\therefore$ Pilihan yang sesuai ialah $(B)\ 462$

6. Soal SIMAK UI 2012 Kode 222 (*Soal Lengkap)

Sebuah bulat mempunyai jari-jari $log\ a^{2}$ dan keliling $log\ b^{4}$, maka $^{a}log\ b=\cdots$
$\begin{align}
(A)\ & \dfrac{1}{4\pi} \\
(B)\ & \dfrac{1}{\pi} \\
(C)\ & \pi \\
(D)\ & 2\pi \\
(E)\ & 10^{2\pi}
\end{align}$
Alternatif Pembahasan:

Keliling Lingkaran ialah $2 \pi r$, sehingga berlaku
$\begin{align}
log\ b^{4} &= 2 \pi\ log\ a^{2} \\
4 log\ b &= 2 \pi\ 2 log\ a \\
4 log\ b &= 4 \pi\ log\ a \\
log\ b &=\pi\ log\ a \\
\dfrac{log\ b}{log\ a} &= \pi \\
^{a}log\ b &= \pi
\end{align}$

$\therefore$ Pilihan yang sesuai ialah $(C)\ \pi$

7. Soal USM STIS 2015 (*Soal Lengkap)

Jika diketahui $x=log\ a$, $y=log\ b$ dan $z=log\ c$. Maka bentuk sederhana dari $log\left (\dfrac{a}{b^{2}}\sqrt{c} \right )$ dalam $x$, $y$ dan $z$ adalah$\cdots$
$\begin{align}
(A)\ & log \left (\dfrac{x}{y^{2}}\sqrt{z} \right ) \\
(B)\ & log\ x-log\ y^{2}+log \sqrt{z} \\
(C)\ & \dfrac{x}{y^{2}}\sqrt{z} \\
(D)\ & x-2y+ \dfrac{1}{2}z \\
(E)\ & x-y^{2}+\sqrt{c}
\end{align}$
Alternatif Pembahasan:

$\begin{align}
log\left (\dfrac{a}{b^{2}}\sqrt{c} \right ) &= log\left (\dfrac{a}{b^{2}}\right )+log\ \sqrt{c} \\
&=log\ a-log\ b^{2} + log\ c^{\dfrac{1}{2}} \\
&=log\ a-2\ log\ b +\dfrac{1}{2} log\ c \\
&=x-2y +\dfrac{1}{2} z \\
\end{align}$

$\therefore$ Pilihan yang sesuai ialah $(D)\ x-2y+ \dfrac{1}{2}z$

8. Soal USM STIS 2017 (*Soal Lengkap)

$\dfrac{\left (^{5}log\ 10 \right )^{2}-\left (^{5}log\ 2 \right )^{2}}{^{5}log\ \sqrt{20}}=\cdots$
$\begin{align}
(A)\ & \dfrac{1}{2} \\
(B)\ & 1 \\
(C)\ & 2 \\
(D)\ & 4 \\
(E)\ & 5
\end{align}$
Alternatif Pembahasan:

Untuk menuntaskan soal logaritma diatas kita gunakan sifat aljabar $a^{2}-b^{2}=(a+b)(a-b)$

$\dfrac{\left (^{5}log\ 10 \right )^{2}-\left (^{5}log\ 2 \right )^{2}}{^{5}log\ \sqrt{20}}$
$=\dfrac{\left (^{5}log\ 10\ +\ ^{5}log\ 2 \right) \left(^{5}log\ 10\ -\ ^{5}log\ 2 \right)}{^{5}log\ 20^{\dfrac{1}{2}}}$
$=\dfrac{\left (^{5}log\ 20\right) \left(^{5}log\ 5\right)}{\dfrac{1}{2}\ ^{5}log\ 20}$
$=\dfrac{1}{\dfrac{1}{2}}$
$=2$

$\therefore$ Pilihan yang sesuai ialah $(C)\ 2$

9. Soal UM UNDIP 2015 Kode 517 (*Soal Lengkap)

Diketahui persamaan
\begin{split}^{2}log\ ^{3}log\ \left(^{5}log\ a\right )&=^{3}log\ ^{5}log\ \left(^{2}log\ b\right )\\
&=^{5}log\ ^{2}log\ \left(^{3}log\ c\right )\\
&=0\end{split}maka nilai dari $a+b+c$ adalah$\cdots$

$\begin{align}
(A)\ & 145 \\
(B)\ & 146 \\
(C)\ & 166 \\
(D)\ & 178 \\
(E)\ & 200
\end{align}$
Alternatif Pembahasan:

Untuk menuntaskan persamaan logaritma diatas, kita coba selesaikan persamaannya satu persatu, persamaan pertama;
$\begin{align}
^{3}log\ ^{5}log\ \left(^{2}log\ b\right )&=0\\
^{3}log\ ^{5}log\ \left(^{2}log\ b\right )&=\ ^{3}log\ 1\\
^{5}log\ \left(^{2}log\ b\right )&=1\\
^{5}log\ \left(^{2}log\ b\right )&=\ ^{5}log\ 5\\
\left(^{2}log\ b\right )&=5\\
b&=2^{5}\\
b&=32
\end{align}$

Persamaan kedua;
$\begin{align}^{5}log\ ^{2}log\ \left(^{3}log\ c\right )&=0\\
^{5}log\ ^{2}log\ \left(^{3}log\ c\right )&=\ ^{5}log\ 1\\
^{2}log\ \left(^{3}log\ c\right )&=1\\
^{2}log\ \left(^{3}log\ c\right )&=\ ^{2}log\ 2\\
\left(^{3}log\ c\right )&=2\\
c&=3^{2}\\
c&=9
\end{align}$

Persamaan ketiga;
$\begin{align}^{2}log\ ^{3}log\ \left(^{5}log\ a\right )&=0\\
^{2}log\ ^{3}log\ \left(^{5}log\ a\right )&=\ ^{2}log\ 1\\
^{3}log\ \left(^{5}log\ a\right )&= 1\\
^{3}log\ \left(^{5}log\ a\right )&=\ ^{3}log\ 3\\
\left(^{5}log\ a\right )=3\\
a=5^{3}\\
a=125
\end{align}$

$a+b+c=125+32+9=166$

$\therefore$ Pilihan yang sesuai ialah $(C)\ 166$


10. Soal SIMAK UI 2010 Kode 203 (*Soal Lengkap)

Jika $(p,q)$ merupakan penyelesaian dari sistem berikut:
\begin{split}
^{3}log\ x\ +\ ^{2}log\ y &=4\\
^{3}log\ x^{2}\ -\ ^{4}log\ 4y^{2} &=1\\
\end{split} maka nilai $p-q=\cdots$

$\begin{align}
(A)\ & 2 \\
(B)\ & 4 \\
(C)\ & 5 \\
(D)\ & 9 \\
(E)\ & 13
\end{align}$
Alternatif Pembahasan:

Sistem persamaan diatas mempunyai peneyelesaian $(p,q)$, sehingga kita harus mendapat nilai $p$ dan $q$ yang berturut-turut merupakan nilai $x$ dan $y$ dari sistem persamaan.

Pertama kita coba sederhanakan sistem persamaan. Persamaan pertama sudah berada pada bentuk yang paling sederhana, sehingga yang perlu kita sederhanakan ialah persamaan kedua;
$\begin{align}
^{3}log\ x^{2}\ -\ ^{4}log\ 4y^{2} &=1\\
2\ ^{3}log\ x\ -\ ^{2^{2}}log\ {(2y)}^{2} &=1\\
2\ ^{3}log\ x\ -\ \dfrac{2}{2}\ ^{2}log\ {2y} &=1\\
2\ ^{3}log\ x\ -\ ^{2}log\ {2y} &=1\\
2\ ^{3}log\ x\ -\ (^{2}log\ {2}+^{2}log\ {y}) &=1\\
2\ ^{3}log\ x\ -\ ^{2}log\ {2}-^{2}log\ {y} &=1\\
2\ ^{3}log\ x\ -^{2}log\ {y} &=2
\end{align}$

Sistem persamaan kini sanggup kita tuliskan menjadi;
$\begin{align}
^{3}log\ x\ +\ ^{2}log\ y &=4\\
2\ ^{3}log\ x\ -\ ^{2}log\ y &=2\\
\end{align}$
Untuk mempermudah penulisan atau penyelesaian persamaan diatas, kita misalkan $^{3}log\ x\ =m$ dan $^{2}log\ y\ =n$. Dengan pemisalan ini sistem persamaan sanggup kita tuliskan menjadi;
$\begin{align}
m\ +\ n\ &=4\\
2\ m\ -\ n\ &=2\\
\end{align} $
Dengan mengeliminasi atau mengsubstitusi sistem persamaan diatas, maka kita peroleh nilai $m=2$ dan $n=2$.

Untuk nilai $m=2$ maka $^{3}log\ x\ =2$ sehingga $x=3^{2}$
Untuk nilai $n=2$ maka $^{2}log\ y\ =2$ sehingga $y=2^{2}$

Nilai $p-q=9-4=5$

$\therefore$ Pilihan yang sesuai ialah $(C)\ 5$

11. Soal SIMAK UI 2010 Kode 203 (*Soal Lengkap)

Nilai $\dfrac{^{2}log\ 5 \cdot\ ^{6}log\ 5+\ ^{3}log\ 5 \cdot\ ^{6}log\ 5}{^{2}log\ 5 \cdot ^{3}log\ 5}=\cdots$
$\begin{align}
(A)\ & 0 \\
(B)\ & 1 \\
(C)\ & 2 \\
(D)\ & 5 \\
(E)\ & 6
\end{align}$
Alternatif Pembahasan:

$\dfrac{^{2}log\ 5 \cdot\ ^{6}log\ 5+\ ^{3}log\ 5 \cdot\ ^{6}log\ 5}{^{2}log\ 5 \cdot ^{3}log\ 5}$
$=\dfrac{^{2}log\ 5 \cdot\ ^{6}log\ 5+\ ^{3}log\ 5 \cdot\ ^{6}log\ 5}{^{2}log\ 5 \cdot ^{3}log\ 5} \cdot \dfrac{^{5}log\ 6}{^{5}log\ 6}$
$=\dfrac{^{2}log\ 5 \cdot\ ^{6}log\ 5\ \cdot\ ^{5}log\ 6+\ ^{3}log\ 5\ \cdot\ ^{6}log\ 5\ \cdot\ ^{5}log\ 6}{^{2}log\ 5 \cdot ^{3}log\ 5\ \cdot\ ^{5}log\ 6}$
$=\dfrac{^{2}log\ 5\ +\ ^{3}log\ 5}{^{2}log\ 6 \cdot ^{3}log\ 5} \cdot \dfrac{^{5}log\ 3}{^{5}log\ 3}$
$=\dfrac{^{2}log\ 5\ \cdot\ ^{5}log\ 3+\ ^{3}log\ 5\ \cdot\ ^{5}log\ 3}{^{2}log\ 6 \cdot ^{3}log\ 5\ \cdot\ ^{5}log\ 3}$
$=\dfrac{^{2}log\ 3\ +\ 1}{^{2}log\ 6}$
$=\dfrac{^{2}log\ 3\ +\ ^{2}log\ 2}{^{2}log\ 6}$
$=\dfrac{^{2}log\ (3 \cdot 2)}{^{2}log\ 6}$
$=\dfrac{^{2}log\ 6}{^{2}log\ 6}$
$=1$

$\therefore$ Pilihan yang sesuai ialah $(B)\ 1$

12. Soal UM UGM 2017 Kode 723 (*Soal Lengkap)

Jika $^{2}log\ (a-b)=4$, maka $^{4}log\ \left (\dfrac{2}{\sqrt{a}+\sqrt{b}}+\dfrac{2}{\sqrt{a}-\sqrt{b}} \right )=\cdots$
$\begin{align}
(A)\ & \dfrac{^{2}log\ a-4}{4} \\
(B)\ & \dfrac{^{2}log\ a+4}{4} \\
(C)\ & \dfrac{^{2}log\ a-2}{2} \\
(D)\ & \dfrac{^{2}log\ a+2}{2} \\
(E)\ & \dfrac{^{2}log\ a-1}{2}
\end{align}$
Alternatif Pembahasan:

$^{4}log\ \left (\dfrac{2}{\sqrt{a}+\sqrt{b}}+\dfrac{2}{\sqrt{a}-\sqrt{b}} \right )$
$=\ ^{4}log\ \left (\dfrac{4\sqrt{a}}{a-b} \right )$
$=\ ^{4}log\ 4\sqrt{a} -\ ^{4}log\ (a-b)$
$=\ ^{4}log\ 4 +\ ^{4}log\ \sqrt{a} -\ \dfrac{1}{2} \cdot ^{2}log\ (a-b)$
$=1 +\ ^{2^{2}}log\ a^{\dfrac{1}{2}} -\ \dfrac{1}{2} \cdot 4$
$=1 +\ \dfrac{1}{4} \cdot ^{2}log\ a -\ 2$
$=\dfrac{1}{4} \cdot ^{2}log\ a -\ 1$
$=\dfrac{^{2}log\ a -\ 4}{4}$

$\therefore$ Pilihan yang sesuai ialah $(A)\ \dfrac{^{2}log\ a-4}{4}$

13. Soal SIMAK UI 2009 Kode 911 (*Soal Lengkap)

${}^3 \log x + 2\ {}^9 \log y = 3$ dan ${}^3 \log \left( \dfrac{x-y}{2} \right) = 0 $, maka $ x + y = \cdots $
$\begin{align}
(1)\ & 2\sqrt{7} \\
(2)\ & -4\sqrt{7} \\
(3)\ & -2\sqrt{7} \\
(4)\ & 4\sqrt{7}
\end{align}$
Alternatif Pembahasan:

Kita coba mulai bermain dari persamaan pertama ${}^3 \log x + 2\ {}^9 \log y = 3 $, dengan mengusahakan bilangan pokok logaritma jadi sama.
$ \begin{align}
{}^3 \log x + 2\ {}^9 \log y & = 3 \\
{}^3 \log x + 2\ {}^{3^2} \log y & = 3 \\
{}^3 \log x + 2 \cdot \dfrac{1}{2} \cdot {}^3 \log y & = 3 \\
{}^3 \log x + {}^3 \log y & = 3 \\
{}^3 \log xy & = 3 \\
xy & = 3^3 \\
xy & = 27 \\
\end{align} $
Syarat bilangan ${}^3 \log x$ ialah $ x > 0 $ dan syarat ${}^9 \log y$ ialah $ y > 0 $.

Lalu kita bermain dari persamaan kedua $ {}^3 \log \left( \dfrac{x-y}{2} \right) = 0 $
$ \begin{align}
{}^3 \log \left( \dfrac{x-y}{2} \right) & = 0 \\
\dfrac{x-y}{2} & = 3^0 \\
\dfrac{x-y}{2} & = 1 \\
x - y & = 2
\end{align} $

Dari hasil yang kita peroleh dari persamaan pertama $ xy = 27 $ dan kedua $ x - y = 2 $;
$ \begin{align}
x - y & = 2 \\
(x - y)^2 & = 2^2 \\
x^2 + y^2 - 2xy & = 4 \\
x^2 + 2xy + y^2 - 4xy & = 4 \\
(x + y)^2 - 4xy & = 4 \\
(x + y)^2 & = 4 + 4xy \\
(x + y)^2 & = 4 + 4. 27 \\
(x + y)^2 & = 112 \\
x + y & = \pm \sqrt{112} \\
x + y & = \pm 4 \sqrt{7}
\end{align} $

Karena $ x > 0 $ dan $ y > 0 $ dari syarat, maka nilai $ x + y$ yang memenuhi hanya $4\sqrt{7}$.

$\therefore$ Pilihan yang sesuai ialah $(D)\ (4)\ 4\sqrt{7}$

14. Soal SBMPTN 2018 Kode 526 (*Soal Lengkap)

Jika $x_{1}$ dan $x_{2}$ memenuhi $\left ( ^{(2-x)}log\ 27 \right )^{2}=9$ maka nilai $x_{1}+x_{2}$ adalah
$\begin{align}
(A)\ & \dfrac{8}{3} \\
(B)\ & \dfrac{5}{3} \\
(C)\ & \dfrac{2}{3} \\
(D)\ & -\dfrac{2}{3} \\
(E)\ & -\dfrac{8}{3}
\end{align}$
Alternatif Pembahasan:

$\begin{align}
\left ( ^{(2-x)}log\ 27 \right )^{2} &= 9 \\
^{(2-x)}log\ 27 & = \pm \sqrt{9} \\
^{(2-x)}log\ 27 & = \pm 3 \\
^{(2-x)}log\ 27 & = 3\ \text{atau} \\
^{(2-x)}log\ 27 & = - 3
\end{align}$

$\begin{align}
^{(2-x)}log\ 27 & = 3 \\
(2-x)^{3} & = 27 \\
(2-x)^{3} & = 3^{3} \\
2-x & = 3 \\
2-3 & = x \\
-1 & = x
\end{align}$

$\begin{align}
^{(2-x)}log\ 27 & = -3 \\
(2-x)^{-3} & = 27 \\
(2-x)^{-3} & = \dfrac{1}{3}^{-3} \\
2-x & = \dfrac{1}{3} \\
6-3x & = 1 \\
6-1 & = 3x \\
\dfrac{5}{3} & = x
\end{align}$

$x_{1}+x_{2}= \dfrac{5}{3}-1=\dfrac{2}{3}$
$\therefore$ Pilihan yang sesuai ialah $(C)\ \dfrac{2}{3}$

15. Soal SBMPTN 2018 Kode 527 (*Soal Lengkap)

Jika $x_{1}$ dan $x_{2}$ memenuhi $\left ( ^{3}log\ (x+1) \right )^{2}=4$ maka nilai $x_{1} x_{2}$ adalah...
$\begin{align}
(A)\ & 8 \\
(B)\ & \dfrac{64}{9} \\
(C)\ & -\dfrac{8}{9} \\
(D)\ & -\dfrac{64}{9} \\
(E)\ & -\dfrac{80}{9}
\end{align}$
Alternatif Pembahasan:

$\begin{align}
\left ( ^{3}log\ (x+1) \right )^{2} &= 4 \\
^{3}log\ (x+1) &= \pm \sqrt{ 4} \\
^{3}log\ (x+1) &= \pm 2 \\
^{3}log\ (x+1) &= 2\ \text{atau} \\
^{3}log\ (x+1) &= - 2
\end{align}$

$\begin{align}
^{3}log\ (x+1) &= 2 \\
3^{2} & = x+1 \\
9 & = x+1 \\
x & = 8
\end{align}$

$\begin{align}
^{3}log\ (x+1) &= -2 \\
3^{-2} & = x+1 \\
\dfrac{1}{9} & = x+1 \\
1 & = 9x+9 \\
-8 & = 9x \\
-\dfrac{8}{9} & = x
\end{align}$

$x_{1} x_{2}=-\dfrac{8}{9} \times 8 = -\dfrac{64}{9}$

$ \therefore $ Pilihan yang sesuai ialah $(D)\ -\dfrac{64}{9}$

16. Soal SIMAK UI 2018 Kode 641 (*Soal Lengkap)

Jika $ ^{7}log\ \left( ^{3}log\ \left( ^{2}log\ x \right ) \right ) =0$, nilai $2x+^{4}log\ x^{2}$ adalah...
$\begin{align}
(A)\ & 10 \\
(B)\ & 12 \\
(C)\ & 19 \\
(D)\ & 21 \\
(E)\ & 24
\end{align}$
Alternatif Pembahasan:

$\begin{align}
^{7}log\ \left( ^{3}log\ \left( ^{2}log\ x \right ) \right ) &= 0 \\
^{7}log\ \left( ^{3}log\ \left( ^{2}log\ x \right ) \right ) &= ^{7}log\ 1 \\
^{3}log\ \left( ^{2}log\ x \right ) &= 1 \\
^{3}log\ \left( ^{2}log\ x \right ) &= ^{3}log\ 3 \\
^{2}log\ x &= 3 \\
x &= 2^{3} =8
\end{align}$

$\begin{align}
2x+^{4}log\ x^{2} &= 2(8)+^{4}log\ (8)^{2} \\
& = 16 + ^{4}log\ (8)^{2} \\
& = 16 + ^{4}log\ 4^{3} \\
& = 16 + 3 = 19
\end{align}$

$ \therefore $ Pilihan yang sesuai ialah $(C)\ 19$

17. Soal SIMAK UI 2012 Kode 223 (*Soal lengkap)

Jika diketahui $x$ dan $y$ ialah bilangan real dengan $x \gt 1$ dan $y \gt 0$. Jika $xy=x^{y}$ dan $\dfrac{x}{y}=x^{5y}$, maka $x^{2}+3y=\cdots$
$\begin{align}
(A)\ & 29 \\
(B)\ & 28 \\
(C)\ & 27 \\
(D)\ & 26 \\
(E)\ & 25
\end{align}$
Alternatif Pembahasan:

$\begin{align}
x^{y} &= xy \Leftrightarrow {}^x\!\log (xy)=y \\
{}^x\!\log (xy) &= y \\
{}^x\!\log x+{}^x\!\log y &= y \\
1+{}^x\!\log y &= y \\
{}^x\!\log y &= y-1 \cdots (pers.1)
\end{align}$
$\begin{align}
\dfrac{x}{y} &= x^{5y} \Leftrightarrow {}^x\!\log (\dfrac{x}{y}) = 5y \\
{}^x\!\log (\dfrac{x}{y}) &= 5y \\
{}^x\!\log x-{}^x\!\log y &= 5y \\
1-{}^x\!\log y &= 5y \\
{}^x\!\log y &= 1-5y\ \cdots (pers.2)
\end{align}$

Dengan mensubstitusi $(pers.1)$ dan $(pers.2)$ maka kita peroleh:
$\begin{align}
{}^x\!\log y &= {}^x\!\log y \\
y-1 &= 1-5y \\
6y &= 2\ \Rightarrow y= \dfrac{1}{3} \\
\hline
xy &= x^{y} \\
x\left( \dfrac{1}{3} \right) &= x^{\dfrac{1}{3}} \\
x &= 3x^{\dfrac{1}{3}} \\
x^{3} &= 27x\ \Rightarrow x^{2} = 27 \\
\hline
x^{2}+3y &= 27+3(\dfrac{1}{3})=28
\end{align}$

$\therefore$ Pilihan yang sesuai ialah $(B)\ 28$

18. Soal UM UGM 2014 Kode 521 (*Soal Lengkap)

Jika $4^{y+3x}=64$ dan ${}^x\!\log (x+12)-3{}^x\!\log 4=-1$ maka $x+2y=\cdots$
$\begin{align}
(A)\ & 86 \\
(B)\ & 34 \\
(C)\ & -5 \\
(D)\ & -14 \\
(E)\ & -34
\end{align}$
Alternatif Pembahasan:

$\begin{align}
{}^x\!\log (x+12)-3{}^x\!\log 4 &= -1 \\
{}^x\!\log (x+12)- {}^x\!\log 4^{3} &= -1 \\
{}^x\!\log \dfrac{(x+12)}{4^{3}} &= {}^x\!\log \dfrac{1}{x} \\
\dfrac{(x+12)}{4^{3}} &= \dfrac{1}{x} \\
x^{2}+12x &= 64 \\
x^{2}+12x-64 &= 0 \\
(x+16)(x-4) &= 0 \\
x=-16\ \text{(TM)}\ \text{atau}\ &\ x=4
\end{align}$

$\begin{align}
4^{y+3x} &= 64 \\
4^{y+3x} &= 4^{3} \\
y+3x &= 3 \\
y &= 3-3x \\
x=4\ & \Rightarrow y=-9 \\
\hline
x+2y= & 4+2(-9)=-14
\end{align}$

$\therefore$ Pilihan yang sesuai ialah $(B)\ 28$


19. Soal UM UGM 2014 Kode 521 (*Soal Lengkap)

Jika $f \left(x^{2}+3x+1 \right) = {}^2\!\log \left(2x^{3}-x^{2}+7 \right)$, $x \geq 0$ maka $f(5)=\cdots$
$\begin{align}
(A)\ & 1 \\
(B)\ & 2 \\
(C)\ & 3 \\
(D)\ & 4 \\
(E)\ & 5
\end{align}$
Alternatif Pembahasan:

$\begin{align}
f \left(x^{2}+3x+1 \right) &= {}^2\!\log \left(2x^{3}-x^{2}+7 \right) \\
\text{untuk}\ x=1, \text{maka:}\\
f \left((1)^{2}+3(1)+1 \right) &= {}^2\!\log \left(2(1)^{3}-(1)^{2}+7 \right) \\
f \left(5 \right) &= {}^2\!\log \left(8 \right) \\
&= {}^2\!\log 2^{3} \\
&= 3
\end{align}$

$\therefore$ Pilihan yang sesuai ialah $(C)\ 3$

20. Soal UMB-PT 2014 Kode 672 (*Soal Lengkap)

Jika $a \gt 1$, $b \gt 1$ dan $c \gt 1$ maka $\left( {}^a\!\log \dfrac{1}{b} \right)\left( {}^b\!\log \dfrac{1}{c} \right)\left( {}^c\!\log \dfrac{1}{a} \right)=\cdots$
$\begin{align}
(A)\ & 1-abc \\
(B)\ & abc \\
(C)\ & -abc \\
(D)\ & 1 \\
(E)\ & -1
\end{align}$
Alternatif Pembahasan:

$\begin{align}
& \left( {}^a\!\log \dfrac{1}{b} \right)\left( {}^b\!\log \dfrac{1}{c} \right)\left( {}^c\!\log \dfrac{1}{a} \right) \\
& = \left( {}^a\!\log b^{-1} \right)\left( {}^b\!\log c^{-1} \right)\left( {}^c\!\log a^{-1} \right) \\
& = (-1) \left( {}^a\!\log b \right)(-1)\left( {}^b\!\log c \right)(-1)\left( {}^c\!\log a \right) \\
& = (-1) {}^a\!\log b \cdot {}^b\!\log c \cdot {}^c\!\log a \\
&= -1
\end{align}$

$\therefore$ Pilihan yang sesuai ialah $(E)\ -1$

21. Soal SBMPTN 2014 Kode 683 (*Soal Lengkap)

Jika ${}^b\!\log a=-2$ dan ${}^3\!\log b=\left( {}^3\!\log 2 \right)\left(1+ {}^2\!\log 4a \right)$, maka $4a+b=\cdots$
$\begin{align}
(A)\ & 768 \\
(B)\ & 72 \\
(C)\ & 36 \\
(D)\ & 12 \\
(E)\ & 3
\end{align}$
Alternatif Pembahasan:

$\begin{align}
{}^b\!\log a &= -2 \\
b^{-2} & = a \\
\hline
{}^3\!\log b &= \left( {}^3\!\log 2 \right)\left(1+ {}^2\!\log 4a \right) \\
{}^3\!\log b &= \left( {}^3\!\log 2 \right)\left({}^2\!\log 2+ {}^2\!\log 4b^{-2} \right) \\
{}^3\!\log b &= {}^3\!\log 2 \cdot {}^2\!\log 8b^{-2} \\
{}^3\!\log b &= {}^3\!\log 8b^{-2} \\
b &= 8b^{-2} \\
b^{3} &= 8 \\
b &= 2 \\
\hline
a & = b^{-2}=2^{-2}=\dfrac{1}{4} \\
4a+b & = 4 \left( \dfrac{1}{4} \right) + 2 \\
& = 3
\end{align}$

$\therefore$ Pilihan yang sesuai ialah $(E)\ 3$

22. Soal SIMAK UI 2010 Kode 208 (*Soal Lengkap)

Jika diketahui ${}^a\!\log b + \left( {}^a\!\log b \right)^{2} + \left( {}^a\!\log b \right)^{3} + \cdots =2$, maka $ {}^a\!\log b + {}^b\!\log \sqrt[3]{a^{2}}=\cdots$
$\begin{align}
(A)\ & 1 \\
(B)\ & \dfrac{3}{2} \\
(C)\ & \dfrac{5}{3} \\
(D)\ & 2 \\
(E)\ & 3
\end{align}$
Alternatif Pembahasan:

Untuk menuntaskan soal ini kita tidak hanya perlu beberapa sifat logaritma yang harus sudah kita pahami, tetapi juga perlu jumlah deret tak hingga konvergen.
Deret ${}^a\!\log b + \left( {}^a\!\log b \right)^{2} + \left( {}^a\!\log b \right)^{3} + \cdots =2$ ialah deret geometri tak hingga yang konvergen dimana $U_{1}={}^a\!\log b$ dan $r={}^a\!\log b$ sehingga berlaku;
$\begin{align}
S_{\infty } &= \dfrac{a}{1-r} \\
2 &= \dfrac{{}^a\!\log b}{1-{}^a\!\log b} \\
2 &= \dfrac{{}^a\!\log b}{{}^a\!\log a-{}^a\!\log b} \\
2 &= \dfrac{{}^a\!\log b}{{}^a\!\log \dfrac{a}{b} } \\
2 \cdot {}^a\!\log \dfrac{a}{b} &= {}^a\!\log b \\
{}^a\!\log \left( \dfrac{a}{b} \right)^{2}&= {}^a\!\log b \\
\left( \dfrac{a}{b} \right)^{2}&= b \\
a^{2} &= b \cdot b^{2} \\
a^{2} &= b^{3} \\
a^{\frac{2}{3}} &= b
\end{align}$

Nilai dari
$\begin{align}
{}^a\!\log b + {}^b\!\log \sqrt[3]{a^{2}} &= {}^a\!\log a^{\frac{2}{3}} + {}^b\!\log \sqrt[3]{b^{3}} \\
&= \dfrac{2}{3} \cdot {}^a\!\log a + {}^b\!\log b \\
&= \dfrac{2}{3} + 1 = \dfrac{5}{3}
\end{align}$

$\therefore$ Pilihan yang sesuai ialah $(C)\ \dfrac{5}{3}$

23. Soal UM STIS 2011 (*Soal Lengkap)

Jika $log\ x=6$ dan $log\ y=12$, maka nilai $\sqrt{log\ \sqrt{x\sqrt{y\sqrt{x\sqrt{y\sqrt{x\sqrt{y\cdots}}}}}}}$ adalah...
$\begin{align}
(A)\ & 2 \\
(B)\ & 4 \\
(C)\ & 8 \\
(D)\ & \sqrt{2} \\
(E)\ & 2\sqrt{2}
\end{align}$
Alternatif Pembahasan:

Catatan calon guru yang mungkin kita perlukan wacana logaritma dan Bentuk akar, antara lain;

  • ${}^a\!\log x\ +{}^a\!\log y={}^a\!\log \left(xy \right) $
  • ${}^a\!\log a^{n}=n $
Untuk menuntaskan soal di atas kita coba dengan eksplorasi aljabar, menyerupai berikut ini:
$\begin{align}
\text{misal}\ \sqrt{x\sqrt{y\sqrt{x\sqrt{y\sqrt{x\sqrt{y\cdots}}}}}} & = 10^{m} \\
x\sqrt{y\sqrt{x\sqrt{y\sqrt{x\sqrt{y\cdots}}}}} & = 10^{2m} \\
x^{2} y\sqrt{x\sqrt{y\sqrt{x\sqrt{y\cdots}}}} & = 10^{4m} \\
x^{2} y \cdot 10^{m} & = 10^{4m} \\
x^{2} y & = \dfrac{10^{4m}}{10^{m}} \\
x^{2} y & = 10^{3m} \\
log\ \left( x^{2} y \right) & =log\ 10^{3m} \\
log\ x^{2} + log\ y & =3m \cdot log\ 10 \\
2 \cdot log\ x + log\ y & =3m \\
2 \cdot 6 + 12 & =3m \\
24 & =3m \\
8 &= m
\end{align}$
Jika kita kembali kepada soal, kita peroleh:
$\begin{align}
& \sqrt{log\ \sqrt{x\sqrt{y\sqrt{x\sqrt{y\sqrt{x\sqrt{y\cdots}}}}}}} \\
& = \sqrt{log\ 10^{m}} \\
& = \sqrt{log\ 10^{8}} \\
& = \sqrt{8} \\
& = 2\sqrt{2}
\end{align}$

$\therefore$ Pilihan yang sesuai $(E)\ 2\sqrt{2}$

24. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019

Diketahui sistem persamaan
$\left\{\begin{matrix}
4^{x}+5^{y}=6 \\
4^{\frac{x}{y}} = 5
\end{matrix}\right.$
Nilai $\dfrac{1}{x}+\dfrac{1}{y}=\cdots$
$\begin{align}
(A)\ & {}^3\!\log 4 \\
(B)\ & {}^3\!\log 20 \\
(C)\ & {}^3\!\log 5 \\
(D)\ & {}^3\!\log 25 \\
(E)\ & {}^3\!\log 6
\end{align}$
Alternatif Pembahasan:

Dari sistem persamaan yang disampaikan di atas, kita mungkin butuh sedikit catatan calaon guru wacana logaritma yaitu:

  • ${}^a\!\log x\ +{}^a\!\log y={}^a\!\log \left (x\cdot y \right )$
  • ${}^a\!\log x= \dfrac{1}{{}^x\!\log a} $
Dari persamaan $4^{\frac{x}{y}} = 5$ kita peroleh $4^{x} = 5^{y}$, kemudian sanggup kita substitusikan:
$\begin{align}
4^{x}+5^{y} &= 6 \\
5^{y}+5^{y} &= 6 \\
2 \cdot 5^{y} &= 6 \\
5^{y} &= 3 \\
{}^5\!\log 3= y \\
\hline
4^{x} &= 5^{y}\\
4^{x} &= 5^{{}^5\!\log 3}\\
4^{x} &= 3 \\
{}^4\!\log 3= x
\end{align}$

$\begin{align}
\dfrac{1}{x}+\dfrac{1}{y} &= \dfrac{1}{{}^4\!\log 3}+\dfrac{1}{{}^5\!\log 3} \\
&= {}^3\!\log 4 + {}^3\!\log 5 \\
&= {}^3\!\log (4 \cdot 5) \\
&= {}^3\!\log 20
\end{align}$

$ \therefore $ Pilihan yang sesuai ialah $(B)\ {}^3\!\log 20$


Jika engkau tidak sanggup menahan lelahnya belajar, Maka engkau harus menanggung pahitnya kebodohan ___pythagoras
Beberapa pembahasan soal Matematika Dasar Logaritma (*Soal Dari Berbagai Sumber) di atas ialah coretan kreatif siswa pada
  • lembar balasan evaluasi harian matematika,
  • lembar balasan evaluasi simpulan semester matematika,
  • presentasi hasil diskusi matematika atau
  • pembahasan quiz matematika di kelas.
Jadi saran, kritik atau masukan yang sifatnya membangun terkait duduk perkara alternatif penyelesaian soal Logaritma sangat diharapkan😊CMIIW

Jangan Lupa Untuk Berbagi 🙏Share is Caring 👀 dan JADIKAN HARI INI LUAR BIASA! - WITH GOD ALL THINGS ARE POSSIBLE😊

Video pilihan khusus untuk Anda 😊 Masih menganggap matematika hanya hitung-hitungan semata, mari kita lihat kreativitas siswa ini;
atatan calon guru yang kita diskusikan dikala ini akan membahas wacana Matematika Dasar Log Bank Soal dan Pembahasan Matematika Dasar Logaritma


Sumber http://www.defantri.com

Berlangganan update artikel terbaru via email:

0 Response to "Bank Soal Dan Pembahasan Matematika Dasar Logaritma"

Posting Komentar

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel